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Abstract In this paper, the recently presented kinetic model proposed in Milani and
Milani (J Math Chem 51(3):1116–1133, 2013) to interpret EPDM peroxide vulcaniza-
tion is extensively revised and the resultant second order ODE is solved by means of an
approximate but effective closed form analytical approach. The model has kinetic base
and it is aimed at predicting, by means of a very refined approach, the vulcanization
degree of rubber vulcanized with peroxides. Such a procedure takes contemporarily
into consideration, albeit within a simplified scheme, the actual reactions occurring
during peroxidic curing, namely initiation, H-abstraction, combination and addition,
and supersedes the simplified approach used in practice, which assumes for peroxidic
curing a single first order reaction. The main drawback of the overall procedure pro-
posed in Milani and Milani (J Math Chem 51(3):1116–1133, 2013) is that the single
second order non-linear differential equation obtained mathematically and represent-
ing the crosslink evolution with respect to time, was solved numerically by means of a
Runge–Kutta approach. Such a limitation is here superseded and a major improvement
is proposed allowing the utilization of an approximate but still effective closed form
solution. After some simplifications applied on some parts of the solving function not
allowing direct closed form integration, an analytical function is proposed. Kinetic
parameters within the analytical model are evaluated through least squares where tar-
get data are represented by few experimental normalized rheometer curve values. In
order to have an insight into the reliability of the numerical approach proposed, a case
of technical interest of an EPDM with low unsaturation and crosslinked with three
different peroxides at three increasing temperatures is critically discussed.
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1 Introduction

The subject of peroxide curing has always been of interest to chemists and physi-
cists working in the elastomer field, see e.g. [1–6]. The reasons for this interest stem
mainly from the relatively simple chemistry involved and the simple resulting network
structure. The more widely used vulcanization systems based upon sulphur or sulphur
compounds are very much more complex in mechanism and produce more varied
crosslinks [7–13] together with other chain modifications.

At present, it can be stated that a huge amount of both experimental investigations
and numerical models for EPDM cured with peroxides is available in the technical
literature. However, the determination of the exact chemistry of vulcanization as well
as the identification of the partial reactions occurring during curing, are still an open
issue.

Recently, basing on the research carried on by van Duin and co-workers in [14–
19] aimed at identifying more precisely the chemical mechanisms of peroxide curing,
Milani and Milani [1] proposed a relatively simple mathematical differential model
aimed at evaluating numerically the degree of crosslink of EPDM subjected to peroxide
curing. The approach bases on the actual reactions occurring in practice, namely
initiation with thermal decomposition of the peroxide, abstraction of H-atoms from
the EPDM polymer and formation of EPDM macro-radicals (EPDM•), combination
and addition.

After suitable algebraic computations on the system of first order differential equa-
tions derived from the actual chemistry of reaction, a second order non linear and non
homogeneous differential equation was obtained in [1], called hereafter 2ODENL for
the sake of brevity. In general, it is not possible to solve 2ODENL in closed form.
Therefore, in [1], a standard Runge–Kutta numerical approach was adopted.

Subsequently, a least squares best fitting of 2ODENL solution on normalized
rheometer experimental data was performed to evaluate partial reaction kinetic con-
stants. It can be shown that such last optimization is numerically quite inexpensive,
because it is generally performed on a few experimental values (10–20 points on the
rheometer curves are sufficient to obtained very reliable approximations of the actual
experimental behavior). In addition, it is very stable and requires a few iterations for
a satisfactory convergence.

On the contrary, the utilization of a standard Runge–Kutta algorithm is quite cum-
bersome, because a new system of first order differential equations has to be written
starting from 2ODENL, this last approach being in contradiction with the original aim
of the mathematical model proposed in [1], i.e. to avoid the numerical solution of the
original multi-variable first order differential equation system deduced from the chem-
istry of reaction. In addition, since kinetic constants are unknown, the aforementioned
Runge–Kutta approach has to be embedded within the least squares optimization
procedure, thus requiring a new expensive computation for each iteration within the
optimization procedure adopted.
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In order to eliminate this major drawback of the numerical procedure proposed in
[1], in the present paper, a closed form analytical solution for 2ODENL is found. Such
a solution contains, however, an infinite integral term, which unfortunately cannot
be integrated in closed form. For this reason, an approximating function allowing
explicit integration is found, assuming to minimize the gap between the original and
approximating functions on the integration domain.

In this way, a relatively simple approximated expression for EPDM crosslink density
as a function of curing time is proposed.

Kinetic parameters within the analytical model are again evaluated through least
squares where target data are represented by few experimental normalized rheometer
curve values.

In order to have an insight into the reliability of the numerical approach proposed,
also in comparison with the numerical approach presented in [1], a case of techni-
cal interest of an EPDM with low unsaturation and crosslinked with three different
peroxides at three increasing temperatures is critically discussed.

2 The kinetic mathematical model proposed

Some probable mechanism of EPM/EPDM peroxide curing and the structures formed
have been recently reviewed by van Duin and co-workers in [14–19].

The complex set of the reactions that characterize peroxide cross-linking involves
homolytic cleavage of peroxide, oxy and alkyl radicals, hydrogen abstraction, radical
coupling (cross-link formation), polymer scission and radical transfer. In the case of
EPDM, the amount and type of the third-monomer, are also important parameters to
consider, but they can be safely disregarded in a first approximation of the phenom-
enon for those EPDMs having lower concentrations of the third-monomer. From an
experimental viewpoint, the precise structure of the various products could be obtained
either by an interpretation of the mass spectrometry data or by means of a solid state
13C nuclear magnetic resonance (NMR) study, as done in [19], where it is shown that
an increase in sensitivity is achieved.

The generally accepted basic chemistry [14–19] of EPDM vulcanized with perox-
ides is the following:

1
2 ROOR → RO• → R′• initiation
EP(D)M-H + RO•/R′• → EP(D)M• + ROH/R′H H-abstraction
2EP(D)M• → EP(D)M-EP(D)M combination
EP(D)M• + EP(D)M → EP(D)M − EP(D)M• → EP(D)M − EP(D)M − H addition

(1)

The chain of free-radical reactions is initiated by thermal decomposition of the per-
oxide, yielding primary alkoxy (RO•) or secondary alkyl radicals (R′•). Subsequent
abstraction of H-atoms from the EPDM polymer results in the formation of EPDM
macro-radicals (EPDM•). Calculations based on kinetic data for H-abstraction indi-
cate that H-abstraction mainly occurs along the saturated EPM polymer backbone
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Fig. 1 Energy required in order
to extract hydrogen atom from
the backbone of the
macromolecules at 0 K. At 25 ◦C
add 1 Kcal
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[20], whereas several electron paramagnetic resonance (EPR) spectroscopy studies
have shown the selective formation of allyl radicals derived from the diene monomer.

Considering the energy required for the abstraction of the H-atoms, see Fig. 1,
within the formation of the back-bone, the allyl radicals are more probable than the
others, because of the lowest energy required by the abstraction of the H-atoms.

The actual cross-linking proceeds through two pathways, which have been shown
to be additive [21]. Two EPDM macro-radicals either combine or, alternatively, a
macro-radical adds to an EPDM unsaturation. Visible spectroscopy has confirmed
the conversion of the EPDM unsaturation upon peroxide cure [14–25]. It is noted
that in practical EPDM/peroxide compounds, usually co-agents, such as triallyl
(iso)cyanurate, trimethylolpropane trimethacrylate or m-phenylenebis(maleimide),
are included to increase the peroxide curing efficiency [16], which obviously affects
the mechanism of peroxide cure.

Adopting for EPDM the kinetic scheme constituted by the chemical reactions sum-
marized in Eq. (1) and already adopted by other authors see e.g. [21,25], in [1] differ-
ential mathematical relations among chemical quantities involved in the reticulation
process (1) were deduced. In particular, the chemical reactions appearing in (1) may
be schematized as follows:

I
k1→ 2R

R + P
k2→ P∗

2P∗ k3→ P∗
r

P∗ k4→ P∗
i (2)

In Eq. (2), I is the peroxide, R the primary alkoxy (RO•) or secondary alkyl
radicals (R′•), P the uncured polymer, P∗ is the EPDM macro-radical, P∗

r and P∗
i

the matured cross-linked polymers, and K1,...,4 are kinetic reaction constants. Here
it is worth emphasizing that K1,...,4 are temperature dependent quantities, hence they
rigorously should be indicated as K1,...,4(T ), where T is the absolute temperature.
In what follows, for the sake of simplicity, the temperature dependence will be left
out.

123



J Math Chem (2013) 51:2033–2061 2037

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [min]

f(
t)

, f
a(t

)
K2=0.25 [1/min]

ρ=0.50   f(t)
ρ=0.50 fa(t)

ρ=1.00   f(t)
ρ=1.00 fa(t)

ρ=1.50   f(t)
ρ=1.50 fa(t)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [min]

f(
t)

, f
a(t

)

K2=0.50 [1/min]

ρ=0.50   f(t)
ρ=0.50 fa(t)

ρ=1.00   f(t)
ρ=1.00 fa(t)

ρ=1.50   f(t)
ρ=1.50 fa(t)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [min]

f(
t)

, f
a(t

)

K2=1.00 [1/min]

ρ=0.50   f(t)
ρ=0.50 fa(t)

ρ=1.00   f(t)
ρ=1.00 fa(t)

ρ=1.50   f(t)
ρ=1.50 fa(t)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t [min]

f(
t)

, f
a(t

)

K2=2.00 [1/min]

ρ=0.50   f(t)
ρ=0.50 fa(t)

ρ=1.00   f(t)
ρ=1.00 fa(t)

ρ=1.50   f(t)
ρ=1.50 fa(t)

(a) (b)

(c) (d)

Fig. 2 Functions f (t) and fa(t) at different ρ and K2 values. a K2 = 0.25 (1/min). b K2 = 0.50 (1/min).
c K2 = 1.00 (1/min). d K2 = 2.00 (1/min)

By means of the so called xyz method, independent variables may be established.
From stoichiometry of the reaction, it can be argued that:

I = I0 − x

R = 2x − y

P = P0 − y

P∗ = y − 2z − q

P∗
r = z

P∗
i = q (3)

Obviously, from (3) it can be also deduced that independent variables are
I (t), R(t), P∗

r (t) and P∗
i (t). Indeed, from (3) it turns out that:

x = I − I0

y = 2(I − I0) − R

P = P0 + R − 2 (I − I0)

P∗ = 2(I − I0) − R − 2P∗
r − P∗

i
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Fig. 3 Evaluation of
∫ +∞

0 [ f (t) − t]dt and
∫ +∞

0 [ fa(t) − t]dt at different ρ and K2 values. a K2 = 0.25
(1/min). b K2 = 0.50 (1/min). c K2 = 1.00 (1/min). d K2 = 2.00 (1/min)

z = P∗
r

q = P∗
i (4)

The aim is to provide an analytical expression for vulcanized rubber, i.e. concen-
tration of P∗ with respect to time.

From (2) and (3) and well established kinetic rules, the following set of differential
equations may be written:

(a)
d I

dt
= −K1 I

(b)
d R

dt
= 2K1 I − K2 R P

(c)
d P

dt
= −K2 R P

(d)
d P∗

dt
= K2 R P − K3

(
P∗)2 − K4 P∗

(e)
d P∗

r

dt
= K3

(
P∗)2

(f)
d P∗

i

dt
= K4 P∗ (5)
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Fig. 4 Evaluation of relative
error eint
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Equation (5)a may be solved immediately by separation of variables, allowing to
determine the concentration of peroxide with respect to time:

I = I0e−K1(t−t0) (6)

From (6) and performing the difference between Eqs. b and c in (5) we obtain:

d R

dt
− d P

dt
= 2K1 I = 2K1 I0e−K1(t−t0) (7)

Differentiating Eq. (5)c, it turns out that:

d2 P

dt2 = −K2 R
d P

dt
− K2 P

d R

dt
(8)

From (7), remembering from (5) that R = − 1
K2 P

d P
dt , the second order differential

Eq. (8) may be re-written exclusively in terms of P as follows:

d2 P

dt2 − 1

P

(
d P

dt

)2

+ K2 P
d P

dt
+ 2K1 K2 I0 Pe−K1(t−to) = 0 (9)

Equation (9) is a non-linear and non-homogeneous second order differential equa-
tion in the sole variable P .

Assuming t0 = 0, Eq. (9) simplifies into:

d2 P

dt2 − 1

P

(
d P

dt

)2

+ K2 P
d P

dt
+ 2K1 K2 I0 Pe−K1t = 0 (2ODENL) (10)

ODE (10), labeled hereafter as 2ODENL, has been found in [1], where a numerical
Runge–Kutta approach was used to find an approximation of the solution.
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Indeed, it has to be emphasized that the determination of a closed form solution for
2ODENL is not an easy task. However, it can be shown that the following function:

P (t) = e

(

C1t− 2K2
K1eK1 t

)

C2 + ∫
K2e

(

C1t− 2K2
K1eK1 t

)

dt

(11)

satisfies ODE (10), where C1 and C2 are constants to be determined basing on boundary
conditions.

It can be proved that (11) is the solution of (10) by inverse substitution. Indeed, let
us assume the following simplified symbolic representation of P and its derivatives:
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Table 1 Experimental data set
analyzed, EPDM without
reversion, composition in phr

Polymer

⎛

⎜
⎜
⎜
⎝

VISTALON 1703P
Ethylene in wt.%76.2

VNB-vinylnorbornene in wt.%0.9
Mooney ML (1 + 4) 100 ◦C 35.3

Manufacturer (Exxon)

⎞

⎟
⎟
⎟
⎠

54

Silane treated calcinated kaolin 30

Antioxidants 8

LDPE Riblene MR 10 MFI = 18.7 (ASTM D1238) 6

PE WAX 1

Peroxide 1

Fig. 7 Experimental torque
curves used in the numerical
simulations. a 160 ◦C. b 180 ◦C.
c 200 ◦C
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Fig. 8 EPDM vulcanized with
Perkadox BC-FF, 160 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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P = g3 (x)

g0 (x)

d P

dt
=

(
C1 + 2K2

eK1 t

)
e

(

C1t− 2K2
K1eK1 t

)

g0 (x)
− K2e

2C1t− 4K2
K1eK1 t

[g0 (x)]2

= g2 (x) g3 (x)

g0 (x)
− K2g1 (x)

[g0 (x)]2 = g2 (x) g3 (x)

g0 (x)
− K2 [g3 (x)]2

[g0 (x)]2

d2 P

dt2 = g3 (x) [g2 (x)]2

g0 (x)
− 2K1 K2g3 (x)

g0 (x) eK1t
− K2g1 (x) g2 (x)

[g0 (x)]2 −
K2g1 (x)

(
2C1 + 4K2

eK1 t

)

[g0 (x)]2

+2K 2
2 g3 (x) g1 (x)

[g0 (x)]3 = g3 (x) [g2 (x)]2

g0 (x)
− 2K1 K2g3 (x)

g0 (x) eK1t
− K2 [g3 (x)]2 g2 (x)

[g0 (x)]2

−2K2 [g3 (x)]2 g2 (x)

[g0 (x)]2 + 2K 2
2 [g3 (x)]3

[g0 (x)]3 = g3 (x) [g2 (x)]2

g0 (x)
− 2K1 K2g3 (x)

g0 (x) eK1t

−3K2 [g3 (x)]2 g2 (x)

[g0 (x)]2 + 2K 2
2 [g3 (x)]3

[g0 (x)]3 (12)

Having defined:

g0 (x) = C2 +
∫

K2e

(

C1t− 2K2
K1eK1 t

)

dt

g1 (x) = e
2C1t− 4K2

K1eK1 t = g3 (x)2

g2 (x) = C1 + 2K2

eK1t

g3 (x) = e
C1t− 2K2

K1eK1 t (13)
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Substituting (12) into (10), 2ODENL under study can be re-written as:

g3 (x) [g2 (x)]2

g0 (x)
− 2K1 K2g3 (x)

g0 (x) eK1t
− 3K2 [g3 (x)]2 g2 (x)

[g0 (x)]2 + 2K 2
2 [g3 (x)]3

[g0 (x)]3 +

−g0 (x)

g3 (x)

{
[g2 (x)]2 [g3 (x)]2

[g0 (x)]2 + K 2
2 [g3 (x)]4

[g0 (x)]4 − 2K2
[g2 (x)] [g3 (x)]3

[g0 (x)]3

}

+

+K2
g3 (x)

g0 (x)

{
g2 (x) g3 (x)

g0 (x)
− K2 [g3 (x)]2

[g0 (x)]2

}

+ 2K1 K2g3 (x)

g0 (x) eK1t
= 0 (14)

and hence:

g3 (x) [g2 (x)]2

g0 (x)
+ (−3K2 + 2K2 + K2) [g3 (x)]2 g2 (x)

[g0 (x)]2

+
(
2K 2

2 − K 2
2 − K 2

2

)
[g3 (x)]3

[g0 (x)]3 + −g0 (x)

g3 (x)

{
[g2 (x)]2 [g3 (x)]2

[g0 (x)]2

}

−2K1 K2g3 (x)

g0 (x) eK1t
+ 2K1 K2g3 (x)

g0 (x) eK1t
= 0 (15)

(15) demonstrates that (11) is the solution of 2ODENL (10).

A closed form integral for the function f̄ (t) = K2e
(C1t− 2K2

K1eK1 t )
does not exist.

Therefore, an approximant function is needed. It is worth noting that a good approxi-
mation for f̄ (t) is the following:

f̃ (t) = K2eC1t
[

1 − e−ξ K2t + e
−

(
2K2
K1

+K2t
)]

(16)

where ξ > 0 is a tuning parameter that allows the best fitting of the original function.
In particular, it is worth noting that lim

t→+∞ f̃ (t) = lim
t→+∞ f̄ (t) = K2eC1t and f̃ (0) =

f̄ (0) = K2e
−2 K2

K1 .
To properly determine ξ , we assume that f̃ (t) and f̄ (t) have first derivatives in the

origin with a fixed ratio d f̄ (t)
d f̃ (t)

= r1, i.e.:

d f̃ (t)

dt
= K2C1eC1t

[

1 − e−ξ K2t + e
−

(
2K2
K1

+K2t
)

+ ξ K2

C1
− K2

C1
e
−

(
2K2
K1

+K2t
)]

t=0

= K2C1

[

e
−

(
2K2
K1

)

+ ξ K2

C1
− K2

C1
e
−

(
2K2
K1

)]

= K2

[

C1e
−

(
2K2
K1

)

+ ξ K2 − K2e
−

(
2K2
K1

)]
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Fig. 9 EPDM vulcanized with
Perkadox BC-FF, 160 ◦C.
Absolute error charts at
successive iterations.
a Previously presented
numerical approach. b Present
closed form solution
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Fig. 10 EPDM vulcanized with
Perkadox BC-FF, 180 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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Fig. 11 EPDM vulcanized with Perkadox BC-FF, 180 ◦C. Absolute error charts at successive iterations.
a Previously presented numerical approach. b Present closed form solution

= K 2
2

[(
C1

K2
− 1

)

e−2ρ + ξ

]
d f̄ (t)

dt
=

⎡

⎣K2

(

C1 + 2K2

eK1t

)

e

(

C1t− 2K2
K1eK1 t

)⎤

⎦

t=0

= K 2
2

(
C1

K2
+ 2

)

e−2ρ = r1
d f̃ (t)

dt
(17)

where we have indicated with ρ the ratio between K2 and K1.
Equating the two derivatives in (17) and taking into account the coefficient r1 we

obtain:

ξ =
[

C1

K2

(
1

r1
− 1

)

+ 2

r1
+ 1

]

e−2ρ (18)
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It is interesting to notice that (18) does not depend on C1 and C2 if r1 = 1. The
choice of r1 is iterative, as it will be demonstrated hereafter and is aimed at minimizing
the differences between integrals in Eq. (11) provided by functions f̄ (t) and f̃ (t).
Results of the numerical minimization, see after, should be provided either in tabular
or graphical form, varying K2 and ρ parameters.

It is also interesting to notice that (18) depends exclusively on ρ ratio.
It is also possible to compare functions f̃ (t) and f̄ (t) once constants C1 and C2

are known, for an a-posteriori evaluation of the effectiveness of the approximation
adopted.

Substituting f̄ (t) with f̃ (t) into the solution (11) of the ODE Eq. (10), it is possible
to explicitly integrate the indefinite integral appearing on (11), namely:

P (t) = e

(

C1t− 2K2
K1eK1 t

)

C2 + ∫
K2e

(

C1t− 2K2
K1eK1 t

)

dt

∼= e

(

C1t− 2K2
K1eK1 t

)

C2 + ∫
K2eC1t

[

1 − e−ξ K2t + e
−

(
2K2
K1

+K2t
)]

dt

= e

(

C1t− 2K2
K1eK1 t

)

C̃2 + K2
C1

eC1t − K2
C1−ξ K2

e(C1−ξ K2)t + K2
C1−K2

e
(C1−K2)t− 2K2

K1

= eC1t e
−2 ρ

eK1 t

C̃2 + K2
C1

eC1t − K2
C1−ξ K2

eC1t e−ξ K2t + K2
C1−K2

eC1t e−K2t e−2ρ
(19)

Having indicated with C̃2 = C2+C3, and with C3 an additional integration constant
of the indefinite integral.

It is interesting to notice from (19) that:

lim
t→+∞ P (t) = eC1t

eC1t
(

K2
C1

− K2
C1−ξ K2

e−ξ K2t + K2
C1−K2

e−K2t e−2ρ
) = K2

C1
(20)

Since Eq. (9) holds for vulcanization without reversion, lim
t→+∞ P(t) = 1. As a

consequence, from (20) we obtain:

lim
t→+∞ P (t) = 1 ⇔ C1 = K2 (21)

By means of Eq. (21) and Eq. (18), we can re-write f̃ (t) as:

f̃ (t) = K2eK2t
[
1 − e−ξ K2t + e−(2ρ+K2t)

]

= K2

[

eK2t − e

(
1− 3

r1
e−2ρ

)
K2t + e−(2ρ)

]

= K2eK2t
[

1 − e
− 3

r1
e−2ρ K2t + e−(2ρ+K2t)

]

(22)
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In Fig. 2, functions f (t) = f̄ (t)/(K2eK2t ) and fa(t) = f̃ (t)/(K2eK2t ) are com-
pared in correspondence of four values of K2 (respectively equal to 0.25, 0.5, 1 and 2),
at three different ρ ratios. As it is possible to notice, the approximation is quite sat-
isfactory for all the cases inspected, meaning that the substitution adopted in (19) is
adequate.

In Fig. 3, the two definite integrals
∫ +∞

0 [ f (t)−t]dt and
∫ +∞

0 [ fa(t) − t]dt are eval-
uated at different ρ and K2 values. Such representation provides a visual estimate of
the difference between f (t) and fa(t) in integral form (subtracting t to obtain a definite
integral), i.e. demonstrate the correctness of the approximation for the declared pur-
poses. As it is possible to notice indeed, for all the cases inspected,

∫ +∞
0 [ f (t) − t]dt

and
∫ +∞

0 [ fa(t) − t]dt are very similar.
The goodness of the approximation is also demonstrated by the relative error func-

tion on integrals shown in Fig. 3 and depicted in Fig. 4, where the relative error eint
% ,

defined as 100
∫ +∞

0
[ f (t)− fa(t)]

f (t) dt , is evaluated at different ρ and K2 values.
Values of the coefficient r1 are preliminarily evaluated solving the following mini-

mization problem, at fixed K2 and ρ parameters:

min
r2

�(ξ) = min
∫ +∞

0

∣
∣
∣
∣1 − f̄ (t)

f̃ (t)

∣
∣
∣
∣ dt

ξ = 3

r1
e−2ρ

ρ, K2 ≡ assigned parameters (23)

It is interesting to notice that, while functions f̄ (t) and f̃ (t) tend asymptotically to
K2eK2t for large values of t , we obtain:

lim
t→+∞

∣
∣
∣
∣1 − f̄ (t)

f̃ (t)

∣
∣
∣
∣ = lim

t→+∞

∣
∣
∣
∣
∣
1 − e

(−2ρe−K1t
)

1 − e
− 3

r1
e−2ρ K2t + e−(2ρ+K2t)

∣
∣
∣
∣
∣
= 0 (24)

The integral entering into optimization problem (23) is definite and allows the
determination of r1 numerically.

Usually, K2 and K1 may range between 0.1 and 5 (unit of measure: 1/min), with
ρ ranging from 0.25 to 2. Values of the parameter r1 found through the minimization
problem (23) are sketched in Fig. 5 as a function of K2 and ρ variables.

As can be noted from Fig. 5, r1 exhibits little variability with K2. As a consequence,
it is reasonable to evaluate coefficients of an interpolating spline having as independent
variable ρ.

Results are represented in Fig. 6 with a comparison with functions from minimiza-
tion problem (23) at fixed K2.

Assuming C1 = K2, the last integral of f̃ (t) contains an infinite term, see Eq. (19).
Therefore f̃ (t) has to be re-written as in (22) and re-integrated to provide again
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Fig. 12 EPDM vulcanized with
Perkadox BC-FF, 200 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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Present closed form solution

function P(t) as:

P (t) = e

(

C1t− 2K2
K1eK1 t

)

C2 + ∫
K2

(
eK2t − eK2(1−ξ)t + e−2ρ

)
dt

= e

(

K2t− 2K2
K1eK1 t

)

C̃2 + eK2t − K2
1

1−ξ
eK2(1−ξ)t + e−2ρ t

= eK2t e
−2 ρ

eK1 t

C̃2 + eK2t − K2
1

1−ξ
eK2(1−ξ)t + e−2ρ t

(25)

C̃2 is evaluated imposing the passage, at a time t0, of function (25) on P(t0), i.e.:

C̃2 =
eK2t0 e

−2 ρ

eK1 t0 − P (t0)
[
eK2t0 − K2

1
1−ξ

eK2(1−ξ)t0 + e−2ρ t0
]

P (t0)
(26)

It is interesting to notice from (25) and (26) that:

P (0) = e−2ρ

eK2 t0 e
−2 ρ

eK1 t0 −P(t0)
[
eK2 t0 −K2

1
1−ξ

eK2(1−ξ)t0 +e−2ρ t0
]

P(t0)
+ 1 − K2

1
1−ξ

(27)

Which generally is a number different from zero. It it therefore expected a non
negligible error of the model near the origin when normalized rheometer curves after
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Fig. 13 EPDM vulcanized with
Perkadox BC-FF, 200 ◦C.
Absolute error charts at
successive iterations.
a Previously presented
numerical approach. b Present
closed form solution
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the scorch point are used to evaluate kinetic constants. In this case, indeed, scorch
point is assumed as axis origin and therefore P(0) = 0.

In presence of reversion, not treated here and left to a future contribution, P(t)
does not represent the crosslink degree. Indeed, the knowledge of P∗ is required. P∗
may be determined from R(t). In particular, from Eq. (5)d, P∗ is evaluated solving
the following ODE:

d P∗

dt
= K2 R(t)P(t) − K3

(
P∗)2 − K4 P∗ (28)

Equation (28) is a first order non linear differential equation, which could be solved
using a Runge–Kutta numerical approach [1,26].
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Fig. 14 EPDM vulcanized with Perkadox BC-FF. Convergence of the least squares routine assuming as
target the absolute error. Left: numerical literature approach. Right: present closed form model. a 160 ◦C.
b 180 ◦C. c 200 ◦C

3 Numerical applications

In order to assess the capabilities of the closed form differential equation model when
compared to [1] approach in absence of reversion, an EPDM with low unsaturation
level tested by the author in [27] is here considered as reference data.
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Fig. 15 EPDM vulcanized with
M2 curing agent, 160 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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Full experimental data curve
Present closed form solution

Attention is focused exclusively on the capabilities of the numerical approach to fit
experimental evidences. The EPDM blend is vulcanized in an oscillating disc rheome-
ter, at three different temperatures (160, 180 and 200 ◦C) by means of three different
curing agents, namely two singles peroxides (Perkadox BC-FF and Perkadox 14S-
FL, hereafter called BC-FF and 14-S) and a mixture of three peroxides (Trigonox-T,
Perkadox BC-FF and Perkadox 14S-FL, hereafter called M2 for the sake of clearness).
The blend under consideration has the composition schematically reported in Table 1.

The commercial names by Akzo [28] Trigonox-T, Perkadox BC-FF and Perka-
dox 14S-FL are respectively tert-butyl cumil peroxide, dycumil peroxide and di(tert-
butylperoxyisopropyl) benzene. They exhibit a half-life time equal to 1 h at temper-
atures equal to 146, 138 and 146 ◦C, respectively. The peroxides are therefore quite
similar (Trigonox-T and Perkadox 14S-FL have indeed, exactly the same behavior);
nonetheless, some perceivable differences in the experimental rheometer curves of the
EPDM under consideration are visible. In all cases, experimental results, as expected,
do not exhibit perceivable reversion. Experimental rheometer curves are comparatively
represented for the three curing agents in Fig. 7 at the three vulcanization temperatures
investigated.

To perform a numerical optimization of the kinetic model proposed, experimental
torque values are normalized dividing each point of the curve by the maximum torque,
so that experimental data are always within the range 0–1.

The results of the numerical simulations are comparatively represented in Figs. 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and 28.

Numerical curves for both present and [1] approach are obtained using a non-
linear least squares procedure, for which the convergence performance is evaluated
and represented as follows:

• For Peroxide BC-FF in Fig. 9 at 160◦, in Fig. 11 at 180 ◦C and in Fig. 13 at 200 ◦C;
• For M2 Curing agent in Fig. 16 (160 ◦C), Fig. 18 (180 ◦C) and Fig. 20 (200 ◦C);
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Fig. 16 EPDM vulcanized with M2 curing agent, 160 ◦C. Absolute error charts at successive iterations.
a Previously presented numerical approach. b Present closed form solution

• For Peroxide 14-S in Fig. 23 (160 ◦C), Fig. 25 (180 ◦C) and Fig. 27 (200 ◦C).

In all the aforementioned figures, the absolute value |e| of the difference between
numerical prediction and experimental normalized torque at successive instants (from
zero to the end of vulcanization) is represented. Each curve corresponds to a least
squares iteration. In subfigures—a, the convergence of model [1] is depicted, whereas
in subfigures—b the performance of the present approach is reported. It is obviously
expected that, for both models, curves approach zero after a sufficiently elevated
number of iterations, meaning that the least squares routine is achieving convergence
to the target points.

To have a further insight into the efficiency of the two compared numerical proce-
dures, in Figs. 14, 21 and 28 the quantity �i |e| is represented at successive iterations,
both for the present closed form approach (right) and the previously presented numer-
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Fig. 17 EPDM vulcanized with
M2 curing agent, 180 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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Fig. 18 EPDM vulcanized with
M2 curing agent, 180◦C.
Absolute error charts at
successive iterations.
a Previously presented
numerical approach. b Present
closed form solution
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Fig. 19 EPDM vulcanized with
M2 curing agent, 200 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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Milani & Milani (2013) numerical solution
Fitted experimental points
Full experimental data curve
Present closed form solution

ical procedure (left) by the author [1], at the three different vulcanization temperatures
discussed (a: 160 ◦C; b: 180 ◦C; c: 200 ◦C).

�i |e| is the sum of the absolute values |e|, being |e| the differences between numer-
ical prediction and experimental normalized torque on a vulcanization instant. The
sum is performed on all those experimental points selected within the least squares
procedure as target values to fit.

As can be easily shown, such representation may provide an estimate of the con-
vergence velocity and quality of the models from a global point of view. A direct
comparison between models and among the three different temperatures is also pos-
sible.

From a detailed comparative analysis of the numerical results, the following con-
siderations may be done:

• The convergence rate of the present analytical model is always very high, the model
requiring a few iterations to reach the optimal solution. In terms of convergence
rate, the present model performs almost always better than [1] numerical approach.

• When dealing with the quality of the solution reached, it can be stated that, at
200 ◦C, a closer fitting on experimental data is obtained with the present model,
whereas at 180 ◦C, the performance of numerical model [1] is superior. At 160 ◦C,
the present approach generally seems to fit better experimental evidences (even
if the curves are still not superimposable in some regions) when compared to the
numerical approach proposed in [1]. �i |e| at the end of the simulations is similar
(compare for instance graphs in Fig. 14), but the shape of the normalized rheometer
curve provided by the present approach, see Fig. 8, seems much more realistic and
near the experimental one.

• The normalized rheometer curve provided by the present approach does not fit
well experimental data near the origin. This behavior was expected, because, see
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Fig. 20 EPDM vulcanized with
M2 curing agent, 200 ◦C.
Absolute error charts at
successive iterations.
a Previously presented
numerical approach. b Present
closed form solution
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Eq. (27), the approximate function used for the least squares fitting, Eq. (25), does
not pass through the origin of the axes.

4 Conclusions

The numerical model firstly proposed in [1] for the kinetic interpretation of EPDM
vulcanized with peroxides has been further developed and refined from a mathematical
standpoint and an approximate closed form solution for the second order non-linear
and non-homogeneous differential equation representing the crosslink density evolu-
tion during curing, 2ODENL Eq. (10), has been proposed. The case of EPDM without
reversion has been discussed in detail and the model has been tested on real experi-
mental data. Experimental data to fit are represented either by scaled rheometer curves
at fixed temperatures or by scaled crosslink density evaluated experimentally through
more sophisticated approaches.
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Fig. 21 EPDM vulcanized with M2 curing agent. Convergence of the least squares routine assuming as
target the absolute error. Left: numerical literature approach. Right: present closed form model. a 160 ◦C.
b 180 ◦C. c 200 ◦C

When compared with the previous procedure [1], the present approach allows cir-
cumventing the utilization of a Runge–Kutta explicit routine to solve 2ODENL dif-
ferential equation. This is a major improvement, because, in both modes, kinetic con-
stants at the base of the vulcanization process are estimated by means of a non-linear
least squares data fitting, which requires having at disposal the solution of 2ODENL
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Fig. 22 EPDM vulcanized with
Perkadox 14-S, 160 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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Fig. 23 EPDM vulcanized with
Perkadox 14-S, 160 ◦C.
Absolute error charts at
successive iterations.
a Previously presented
numerical approach. b present
closed form solution
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Fig. 24 EPDM vulcanized with
Perkadox 14-S, 180 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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Fig. 25 EPDM vulcanized with
Perkadox 14-S, 180 ◦C.
Absolute error charts at
successive iterations.
a Previously presented
numerical approach. b present
closed form solution
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Fig. 26 EPDM vulcanized with
Perkadox 14-S, 200 ◦C.
Comparison among
experimental data, previously
presented numerical approach
and present closed form solution
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Fig. 27 EPDM vulcanized with
with Perkadox 14-S, 200 ◦C.
Absolute error charts at
successive iterations.
a Previously presented
numerical approach. b Present
closed form solution
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Fig. 28 EPDM vulcanized with Perkadox 14-S. Convergence of the least squares routine assuming as
target the absolute error. Left: numerical literature approach. Right: present closed form model. a 160 ◦C.
b 180 ◦C. c 200 ◦C

equation iteration by iteration. As a consequence, the convergence rate of the present
approach results much higher.

In order to have an insight into the reliability of the combined numerical/analytical
approach proposed, the model has been tested on a single EPDM blend with low unsat-
uration and crosslinked with three different peroxides at three increasing temperatures.
A critical comparison between results obtained with the present and previously pre-
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sented numerical approach has been reported, showing how the present closed form
solution may fit, in some cases (160 and 200 ◦C temperatures), experimental data even
better than the previously presented numerical procedure.
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